88 research outputs found

    HeritageBot platform for service in Cultural Heritage frames

    Get PDF
    A service robot for Cultural Heritage frames is proposed as a novel robotic platform with a modular design for both ground locomotion and flight capability. The peculiarities of the system are discussed by performance evaluation via simulation. A prototype has been built and tested both to prove the feasibility of the proposed design and to characterize its operation performance

    Static Balancing of Wheeled-legged Hexapod Robots

    Get PDF
    Locomotion over different terrain types, whether flat or uneven, is very important for a wide range of service operations in robotics. Potential applications range from surveillance, rescue, or hospital assistance. Wheeled-legged hexapod robots have been designed to solve these locomotion tasks. Given the wide range of feasible operations, one of the key operation planning issues is related to the robot balancing during motion tasks. Usually this problem is related with the pose of the robot’s center of mass, which can be addressed using different mathematical techniques. This paper proposes a new practical technique for balancing wheeled-legged hexapod robots, where a Biodex Balance System model SD (for static & dynamic) is used to obtain the effective position of the center of mass, thus it can be recalculated to its optimal position. Experimental tests are carried out to evaluate the effectiveness of this technique and modify and improve the position of hexapod robots’ center of mass

    NURSE-2 DoF Device for Arm Motion Guidance: Kinematic, Dynamic, and FEM Analysis

    Get PDF
    Patients with neurological or orthopedic lesions require assistance during therapies with repetitive movements. NURSE (cassiNo-qUeretaro uppeR-limb aSsistive dEvice) is an arm movement aid device for both right- and left-upper limb. The device has a big workspace to conduct physical therapy or training on individuals including kids and elderly individuals, of any age and size. This paper describes the mechanism design of NURSE and presents a numerical procedure for testing the mechanism feasibility that includes a kinematic, dynamic, and FEM (Finite Element Method) analysis. The kinematic demonstrated that a big workspace is available in the device to reproduce therapeutic movements. The dynamic analysis shows that commercial motors for low power consumption can achieve the needed displacement, acceleration, speed, and torque. Finite Element Method showed that the mechanism can afford the upper limb weight with light-bars for a tiny design. This work has led to the construction of a NURSE prototype with a light structure of 2.6 kg fitting into a box of 35 × 45 × 30 cm. The latter facilitates portability as well as rehabilitation at home with a proper follow-up. The prototype presented a repeatability of ±1.3 cm that has been considered satisfactory for a device having components manufactured with 3D rapid prototyping technology

    Characteristics and Performance of CAUTO (CAssino hUmanoid TOrso) Prototype

    Get PDF
    An artificial torso is a fundamental part of a humanoid robot for imitating human actions. In this paper, a prototype of CAUTO (CAssino hUmanoid TOrso) is presented. Its design is characterized by artificial vertebras actuated by cable-driven parallel manipulators. The design was conceived by looking at the complex system and functioning of the human torso, in order to develop a solution for basic human-like behavior. The requirements and kinematic structure are introduced to explain the peculiarities of the proposed mechanical design. A prototype is presented, and built with low-cost and high-performance features. Tests results are reported to show the feasibility and the characteristics in replicating human torso motions. In addition, the power consumption has been measured during the tests to prove the efficiency of the Li-Po battery supply, employed for a fully portable solution of the designed torso

    Assessing Stiffness, Joint Torque and ROM for Paretic and Non-Paretic Lower Limbs during the Subacute Phase of Stroke Using Lokomat Tools

    Get PDF
    The efficacy of Lokomat on motor recovery in stroke patients is well known. However, few studies have examined Lokomat tools to assess stiffness, joint torque and range of motion (ROM) during the subacute phase of stroke. The purpose of this retrospective observational study is to assess the changes of joint torque, ROM and stiffness that were estimated with Lokomat tools, namely L-FORCE (lower limb-force), L-ROM (lower limb-range of motion)and L-STIFF (lower limb-stiff), for paretic and non-paretic lower limbs in the subacute phase of stroke, assuming that the tools were able to measure these changes. The data come from 10 subjects in the subacute phase who had their first ever-stroke and followed a treatment that included Lokomat. The measurements came from basal assessments (T0) and one-month follow-up (T1). The measures were compared between paretic and non-paretic legs, and between T0 and T1. Significant differences in stiffness, joint torque and ROM were obtained between the paretic and non-paretic limbs at both T0 and T1. A non-significant trend was obtained for reduced stiffness and increased torque and ROM between T0 and T1 of the paretic limbs. The Lokomat tools were able to measure the changes between paretic and non-paretic legs and the small changes between T0 and T1 measurements

    Design and Preliminary Testing of a Magnetic Spring as an Energy-Storing System for Reduced Power Consumption of a Humanoid Arm

    Get PDF
    The increasing use of robots in the industry, the growing energy prices, and higher environmental awareness have driven research to find new solutions for reducing energy consumption. In additional, in most robotic tasks, energy is used to overcome the forces of gravity, but in a few industrial applications, the force of gravity is used as a source of energy. For this reason, the use of magnetic springs with actuators may reduce the energy consumption of robots performing trajectories due their high-hardness magnetic properties of energy storage. Accordingly, this paper proposes a magnetic spring configuration as an energy-storing system for a two DoF humanoid arm. Thus, an integration of the magnetic spring system in the robot is described. A control strategy is proposed to enable autonomous use. In this paper, the proposed device is modeled and analyzed with simulations as: mechanical energy consumption and kinetic energy rotational and multibody dynamics. Furthermore, a prototype was manufactured and validated experimentally. A preliminary test to check the interaction between the magnetic spring system with the mechanism and the trajectory performance was carried out. Finally, an energy consumption comparison with and without the magnetic spring is also presented

    Test-Retest, Inter-Rater and Intra-Rater Reliability for Spatiotemporal Gait Parameters Using SANE (an eaSy gAit aNalysis systEm) as Measuring Instrument

    Get PDF
    Studies have demonstrated the validity of Kinect-based systems to measure spatiotemporal parameters of gait. However, few studies have addressed test-retest, inter-rater and intra-rater reliability for spatiotemporal gait parameters. This study aims to assess test-retest, inter-rater and intra-rater reliability of SANE (eaSy gAit aNalysis system) as a measuring instrument for spatiotemporal gait parameters. SANE comprises a depth sensor and a software that automatically estimates spatiotemporal gait parameters using distances between ankles without the need to manually indicate where each gait cycle begins and ends. Gait analysis was conducted by 2 evaluators for 12 healthy subjects during 4 sessions. The reliability was evaluated using Intraclass Correlation Coefficients (ICC). In addition, the Standard Error of the Measurement (SEM), and Smallest Detectable Change (SDC) was calculated. SANE showed from an acceptable to an excellent test-retest, inter-rater and intra-rater reliability; test-retest reliability ranged from 0.62 to 0.81, inter-rater reliability ranged from 0.70 to 0.95 and intra-rater ranged from 0.74 to 0.92. The subject behavior had a greater effect on the reliability of SANE than the evaluator performance. The reliability values of SANE were comparable with other similar studies. SANE, as a feasible and markerless system, has large potential for assessing spatiotemporal gait parameters

    Design and Testing of Torveastro: An Outer Space Service Robot

    Get PDF
    Space robots are one of the most promising solutions for on-orbit servicing (OOS) duties like docking, berthing, refueling, re-pairing, upgrading, transporting, rescuing, and orbital trash disposal. Numerous enabling techniques and technological demonstration missions have been developed and completed over the past two decades. There have been several successful manned on-orbit service missions, but unmanned service missions have not yet been conducted. Robotic maintenance continues to be an important area of investigation with numerous technical challenges. This report outlines the design and initial testing of Torveastro, an astronaut service robot. The specifications are provided concurrently with the design and simulation. In comparison with the simulation results, preliminary tests demonstrated promising behavior for future development

    A Bioinspired Humanoid Foot Mechanism

    Get PDF
    This paper introduces an innovative robotic foot design inspired by the functionality and the anatomy of the human foot. Most humanoid robots are characterized by flat, rigid feet with limited mobility, which cannot emulate the physical behavior of the foot–ground interaction. The proposed foot mechanism consists of three main bodies, to represent the heel, plant, and toes, connected by compliant joints for improved balancing and impact absorption. The functional requirements were extracted from medical literature, and were acquired through a motion capture system, and the proposed design was validated with a numerical simulation

    Design and Experiments of a Novel Humanoid Robot with Parallel Architectures

    Get PDF
    In this paper, the mechanical design of the LARMbot 2, a low-cost user-oriented humanoid robot was presented. LARMbot 2 is characterized by parallel architectures for both the torso and legs. The proposed design was presented with the kinematics of its main parts—legs, torso, arms—and then compared to its previous version, which was characterized by a different leg mechanism, to highlight the advantages of the latest design. A prototype was then presented, with constructive details of its subsystems and its technical specifications. To characterize the performance of the proposed robot, experimental results were presented for both the walking and weight-lifting operations
    • …
    corecore